§ 153.461 - (b) The Commandant (G-MSO) approves the substitution of a dry chemical (D) type fire protection system for an A or B type on a case by case basis. - (c) A fire protection system required by this part must meet part 34 of this chapter or be specifically approved by the Commandant (G-MSO). [CGD 73-96, 42 FR 49027, Sept. 26, 1977, as amended by CGD 82-063b, 48 FR 4782, Feb. 3, 1983; CGD 81-101, 52 FR 7781, Mar. 12, 1987] ## §153.461 Electrical bonding of independent tanks. An independent metallic cargo tank that carries a flammable or combustible cargo must be electrically bonded to the tankship's hull. ### §153.462 Static discharges from inert gas systems. An inert gas system on a tank that carries a flammable or combustible cargo must not create static arcing as the inert gas is injected into the tank. #### §153.463 Vent system discharges. The discharge of a venting system must be at least 10 m (approx. 32.8 ft) from an ignition source if: - (a) The cargo tank is endorsed to carry a flammable or combustible cargo; and - (b) Table 1 requires the cargo to have a PV venting system. #### §153.465 Flammable vapor detector. - (a) A tankship that carries a flammable cargo must have two vapor detectors that meet §35.30–15(b) of this chapter. - (b) At least one of the vapor detectors in paragraph (a) of this section must be portable. #### §153.466 Electrical equipment. A tankship carrying a flammable or combustible cargo under this part must meet subchapter J of this chapter. DESIGN AND EQUIPMENT FOR POLLUTION CONTROL Source: Sections 153.470 through 153.491 appear at CGD 81–101, 52 FR 7781, Mar. 12, 1987, unless otherwise noted. ## §153.470 System for discharge of NLS residue to the sea: Categories A, B, C, and D. Unless waived under §153.491, each ship that discharges Category A, B, or C NLS residue, or Category D NLS residue not diluted to 1/10th of its original concentration, into the sea under \$\mathbb{8}\mathbb{1}\mathbb{ (a) Minimum diameter of an NLS residue discharge outlet. The outlet of each NLS residue discharge system must have a diameter at least as great as that given by the following formula: $$D = \frac{(Q_d)(cosine \phi)}{5L}$$ where: D=Minimum diameter of the discharge outlet in meters. - Q_d =Maximum rate in cubic meters per hour at which the ship operator wishes to discharge slops (note: Q_d affects the discharge rate allowed under §153.1126(b)(2)). - L=Distance from the forward perpendicular to the discharge outlet in meters. - \$\phi\$=The acute angle between a perpendicular to the shell plating at the discharge location and the direction of the average velocity of the discharged liquid. **The acute angle between a perpendicular to the discharged liquid.** **The acute angle between a perpendicular to the discharged liquid.** **The acute angle between a perpendicular to the discharged liquid.** **The acute angle between a perpendicular to the discharged liquid.** **The acute angle between a perpendicular to the discharged liquid.** **The acute angle between a perpendicular to the discharge location and the discharged liquid.** **The acute angle between a perpendicular to the discharge location and - (b) Location of an NLS residue discharge outlet. Each NLS residue discharge outlet must be located— - (1) At the turn of the bilge beneath the cargo area; and - (2) Where the discharge from the outlet is not drawn into the ship's seawater intakes. - (c) Location of dual NLS residue discharge outlets. If the value of 6.45 for K is used in §153.1126(b)(2), the NLS residue discharge system must have two outlets located on opposite sides of the ship. [CGD 81-101, 52 FR 7781, Mar. 12, 1987, as amended by CGD 81-101, 53 FR 28974, Aug. 1, 1988 and 54 FR 12629, Mar. 28, 1989; CGD 95-028, 62 FR 51209, Sept. 30, 1997] # §153.480 Stripping quantity for Category B and C NLS tanks on ships built after June 30, 1986: Categories B and C. Unless waived under §153.491, Category B and C NLS cargo tanks on each ship built after June 30, 1986 must have